Part Number Hot Search : 
TD112 IRG7P D3899 ACT511 S1ZA20 LOU5020 MBR30150 RX5500
Product Description
Full Text Search
 

To Download TSH74CD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  may 2006 rev. 3 1/33 33 tsh70,71,72,73,74,75 rail-to-rail, wide-band, low-power operational amplifiers 3v, 5v, 5v specifications 3db bandwidth: 90mhz gain bandwidth product: 70mhz slew rate: 100v/ms output current: up to 55ma input single supply voltage output rail-to-rail specified for 150 ? loads low distortion, thd: 0.1% sot23-5, tssop and so packages description the tsh7x series offers single, dual, triple and quad operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. running with a single supply voltage from 3v to 12v, these amplifiers feature a large output voltage swing and high output current capable of driving standard 150 ? loads. a low operating voltage makes tsh7x amplifiers ideal for use in portable equipment. the tsh71, tsh73 and tsh75 also feature standby inputs, each of which allows the op-amp to be put into a standby mode with low power consumption and high output impedance. this function allows power saving or signal switching/multiplexing for high-speed applications and video applications. to economize both board space and weight, the tsh7x series is proposed in sot23-5, tssop and so packages. applications video buffers adc driver hi-fi applications pin connections (top view) 1 2 3 5 4 vcc - vcc + + - non-inv. in. inv. in. tsh70 : sot23-5/so8 vcc - vcc + 1 2 3 5 4 8 7 6 nc nc standby non inverting input inverting input output tsh71 : so8/tssop8 + _ vcc - vcc + 1 2 3 5 4 8 7 6 non inverting input1 inverting input1 output2 + _ output1 non inverting input2 inverting input2 + _ tsh72 : so8/tssop8 vcc + vcc - 1 2 3 11 4 14 13 12 non inverting input1 inverting input1 output3 output1 non inverting input3 inverting input3 5 6 7 8 10 9 + _ + _ + _ output2 non inverting input2 inverting input2 standby1 standby2 standby3 tsh73 : so14/tssop14 vcc + vcc - 1 2 3 11 4 14 13 12 non inverting input2 inverting input2 output4 output2 non inverting input4 inverting input4 5 6 7 8 10 9 + _ + _ + _ output3 non inverting input3 inverting input3 + _ output1 non inverting input1 inverting input1 tsh74 : so14/tssop14 vcc + vcc - 1 2 3 13 4 16 15 14 non inverting input2 inverting input2 output4 output2 non inverting input4 inverting input4 5 6 7 10 12 11 + _ + _ + _ output3 non inverting input3 inverting input3 + _ output1 non inverting input1 inverting input1 8 9 standby standby tsh75 : so16/tssop16 output vcc - vcc + 1 2 3 5 4 8 7 6 nc nc output + _ nc inv. in. non-inv. in. 1 2 3 5 4 vcc - vcc + + - non-inv. in. inv. in. tsh70 : sot23-5/so8 vcc - vcc + 1 2 3 5 4 8 7 6 nc nc standby non inverting input inverting input output tsh71 : so8/tssop8 + _ vcc - vcc + 1 2 3 5 4 8 7 6 non inverting input1 inverting input1 output2 + _ output1 non inverting input2 inverting input2 + _ tsh72 : so8/tssop8 vcc + vcc - 1 2 3 11 4 14 13 12 non inverting input1 inverting input1 output3 output1 non inverting input3 inverting input3 5 6 7 8 10 9 + _ + _ + _ output2 non inverting input2 inverting input2 standby1 standby2 standby3 tsh73 : so14/tssop14 vcc + vcc - 1 2 3 11 4 14 13 12 non inverting input2 inverting input2 output4 output2 non inverting input4 inverting input4 5 6 7 8 10 9 + _ + _ + _ output3 non inverting input3 inverting input3 + _ output1 non inverting input1 inverting input1 tsh74 : so14/tssop14 vcc + vcc - 1 2 3 13 4 16 15 14 non inverting input2 inverting input2 output4 output2 non inverting input4 inverting input4 5 6 7 10 12 11 + _ + _ + _ output3 non inverting input3 inverting input3 + _ output1 non inverting input1 inverting input1 8 9 standby standby tsh75 : so16/tssop16 output vcc - vcc + 1 2 3 5 4 8 7 6 nc nc output + _ nc inv. in. non-inv. in. www.st.com
order codes tsh70,71,72,73,74,75 2/33 1 order codes part number temperature range package packing marking tsh70clt 0c to 70c sot23-5 tape & reel k301 tsh70cd/cdt so-8 tube or tape & reel 70c tsh71cd/cdt so-8 tube or tape & reel 71c tsh71cpt tssop8 (thin shrink outline package) tape & reel 71c tsh72cd/cdt so-8 tube or tape & reel 72c tsh72cpt tssop8 (thin shrink outline package) tape & reel 72c tsh73cd/cdt so-14 tube or tape & reel 73c tsh73cpt tssop14 (thin shrink outline package) tape & reel 73c TSH74CD/cdt so-14 tube or tape & reel 74c tsh74cpt tssop14 (thin shrink outline package) tape & reel 74c tsh75cd/cdt so-16 tube or tape & reel 75c tsh75cpt tssop16 (thin shrink outline package) tape & reel 75c
tsh70,71,72,73,74,75 typical application: video driver 3/33 2 typical application: video driver a typical application for the tsh7x family is that of video driver for driving sti7xxx dac outputs on 75-ohm lines. figure 1 show the benefits of the tsh7x family as single supply drivers. figure 1. benefits of tsh7x family: +3v or +5v single supply solution +5v 75 ? 75 ? cable 75 ? 2vpp 1vpp 1vpp video dac lpf reconstruction filtering y,g 75 ? 75 ? cable 75 ? video dac pb,b 75 ? video dac pr,r tv tsh73 75 ? cable 75 ? lpf reconstruction filtering lpf reconstruction filtering 1.4vpp 1.4vpp 0.7vpp 0.7vpp 1.4vpp 1.4vpp 0.7vpp 0.7vpp gnd + _ + _ + _ + _ + _ + _ vcc=+5v vcc=+3v 2vp-p gnd 50mv 1vp-p gnd 100mv gain=2 + _ gnd gnd +5v vol=40mvmax. (tested) voh=4.2vmin. (tested) 2vp-p gnd 100mv vol=30mvmax. (tested) voh=2.45vmin. (tested) 2.1v 2.1v 1k ? 1k ? +3v -5v video dac?s outputs: bottom of synchronization tip around 50mv
absolute maximum ratings & operating conditions tsh70,71,72,73,74,75 4/33 3 absolute maximum ratings & operating conditions table 1. absolute maximum ratings (amr) symbol parameter value unit v cc supply voltage (1) 1. all voltages values, except differential voltage are with respect to network ground terminal 14 v v id differential input voltage (2) 2. differential voltages are non-inverting input terminal with respect to the inverting terminal 2v v i input voltage (3) 3. the magnitude of input and output must never exceed v cc +0.3v 6v t oper operating free air temperature range 0 to +70 c t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thjc thermal resistance junction to case (4) sot23-5 so-8 so-14 so-16 tssopo8 tssop14 tssop16 4. short-circuits can cause excessive heating 80 28 22 35 37 32 35 c/w r thja thermal resistance junction to ambient area sot23-5 so-8 so-14 so-16 tssopo8 tssop14 tssop16 250 157 125 110 130 110 110 c/w esd human body model 2 kv table 2. operating conditions symbol parameter value unit v cc supply voltage 3 to 12 v v ic common mode input voltage range v cc - to (v cc + -1.1) v standby (v cc - ) to (v cc + )v
tsh70,71,72,73,74,75 electrical characteristics 5/33 4 electrical characteristics table 3. v cc + = 3v, v cc - = gnd, v ic = 1.5v, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit |v io | input offset voltage t amb = 25c t min. < t amb < t max. 1.2 10 12 mv ? v io input offset voltage drift vs. temp. t min. < t amb < t max. 4 v/c i io input offset current t amb = 25c t min. < t amb < t max. 0.1 3.5 5 a i ib input bias current t amb = 25c t min. < t amb < t max. 615 20 a c in input capacitance 0.2 pf i cc supply current per operator t amb = 25c t min. < t amb < t max. 7.2 9.8 11 ma cmrr common mode rejection ratio ( v ic / vio) +0.1 electrical characteristics tsh70,71,72,73,74,75 6/33 v ol low level output voltage t amb =25c r l = 150 ? to gnd r l = 600 ? to gnd r l = 2k ? to gnd r l = 10k ? to gnd r l = 150 ? to 1.5v r l = 600 ? to 1.5v r l = 2k ? to 1.5v r l = 10k ? to 1.5v t min. < t amb < t max. r l = 150 ? to gnd r l = 150 ? to 1.5v 10 11 11 11 140 90 68 57 30 300 40 350 mv gbp gain bandwidth product f=10mhz a vcl =+11 a vcl =-10 65 55 mhz bw bandwidth @-3db a vcl =+1, r l =150 ? to 1.5v 87 mhz sr slew rate a vcl =+2, r l =150 ? // c l to 1.5v c l = 5pf c l = 30pf 45 80 85 v/ s m phase margin r l =150 ? // 30pf to 1.5v 40 en equivalent input noise voltage f=100khz 11 nv/ hz thd total harmonic distortion a vcl =+2, f=4mhz, r l =150 ? // 30pf to 1.5v v out =1vpp v out =2vpp -61 -54 db im2 second order intermodulation product a vcl =+2, v out =2vpp r l =150 ? to 1.5v fin1=180khz, fin2=280khz spurious measurements @100khz -76 dbc im3 third order inter modulation product a vcl =+2, v out =2vpp r l =150 ? to 1.5v fin1=180khz, fin2=280khz spurious measurements @400khz -68 dbc ? g differential gain a vcl =+2, r l =150 ? to 1.5v f=4.5mhz, v out =2vpp 0.5 % df differential phase a vcl =+2, r l =150 ? to 1.5v f=4.5mhz, v out =2vpp 0.5 gf gain flatness f=dc to 6mhz, a vcl =+2 0.2 db vo1/vo2 channel separation f=1mhz to 10mhz 65 db table 3. v cc + = 3v, v cc - = gnd, v ic = 1.5v, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit
tsh70,71,72,73,74,75 electrical characteristics 7/33 table 4. v cc + = 5v, v cc - = gnd, v ic = 2.5v, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit |v io | input offset voltage t amb = 25c t min. < t amb < t max. 1.1 10 12 mv ? v io input offset voltage drift vs. temp. t min. < t amb < t max. 3 v/c i io input offset current t amb = 25c t min. < t amb < t max. 0.1 3.5 5 a i ib input bias current t amb = 25c t min. < t amb < t max. 615 20 a c in input capacitance 0.3 pf i cc supply current per operator t amb = 25c t min. < t amb < t max. 8.2 10.5 11.5 ma cmrr common mode rejection ratio ( v ic / vio) +0.1 electrical characteristics tsh70,71,72,73,74,75 8/33 v ol low level output voltage t amb =25c r l = 150 ? to gnd r l = 600 ? to gnd r l = 2k ? to gnd r l = 10k ? to gnd r l = 150 ? to 2.5v r l = 600 ? to 2.5v r l = 2k ? to 2.5v r l = 10k ? to 2.5v t min. < t amb < t max. r l = 150 ? to gnd r l = 150 ? to 2.5v 20 23 23 23 220 105 76 61 40 400 60 450 mv gbp gain bandwidth product f=10mhz a vcl =+11 a vcl =-10 65 55 mhz bw bandwidth @-3db a vcl =+1, r l =150 ? to 2.5v 87 mhz sr slew rate a vcl =+2, r l =150 ? // c l to 2.5v c l = 5pf c l = 30pf 60 104 105 v/ s mphase margin r l =150 ? // 30pf to 2.5v 40 en equivalent input noise voltage f=100khz 11 nv/ hz thd total harmonic distortion a vcl =+2, f=4mhz r l =150 ? // 30pf to 2.5v v out =1vpp v out =2vpp -61 -54 db im2 second order intermodulation product a vcl =+2, v out =2vpp r l =150 ? to 2.5v fin1=180khz, fin2=280khz spurious measurements @100khz -76 dbc im3 third order inter modulation product a vcl =+2, v out =2vpp r l =150 ? to 2.5v fin1=180khz, fin2=280khz spurious measurements @400khz -68 dbc ? g differential gain a vcl =+2, r l =150 ? to 2.5v f=4.5mhz, v out =2vpp 0.5 % df differential phase a vcl =+2, r l =150 ? to 2.5v f=4.5mhz, v out =2vpp 0.5 gf gain flatness f=dc to 6mhz, a vcl =+2 0.2 db vo1/vo2 channel separation f=1mhz to 10mhz 65 db table 4. v cc + = 5v, v cc - = gnd, v ic = 2.5v, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit
tsh70,71,72,73,74,75 electrical characteristics 9/33 table 5. v cc + = 5v, v cc - = -5v, v ic = gnd, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit |v io | input offset voltage t amb = 25c t min. < t amb < t max. 0.8 10 12 mv ? v io input offset voltage drift vs. temp. t min. < t amb < t max. 2 v/c i io input offset current t amb = 25c t min. < t amb < t max. 0.1 3.5 5 a i ib input bias current t amb = 25c t min. < t amb < t max. 615 20 a c in input capacitance 0.7 pf i cc supply current per operator t amb = 25c t min. < t amb < t max. 9.8 12.3 13.4 ma cmrr common mode rejection ratio ( v ic / vio) -4.9 electrical characteristics tsh70,71,72,73,74,75 10/33 gbp gain bandwidth product f=10mhz a vcl =+11 a vcl =-10 65 55 mhz bw bandwidth @-3db a vcl =+1 r l =150 ? // 30pf to gnd 100 mhz sr slew rate a vcl =+2, r l =150 ? // c l to gnd c l = 5pf c l = 30pf 68 117 118 v/ s m phase margin r l =150 ? to gnd 40 en equivalent input noise voltage f=100khz 11 nv/ hz thd total harmonic distortion a vcl =+2, f=4mhz r l =150 ? // 30pf to gnd v out =1vpp v out =2vpp -61 -54 db im2 second order intermodulation product a vcl =+2, v out =2vpp r l =150 ? to gnd fin1=180khz, fin2=280khz spurious measurements @100khz -76 dbc im3 third order intermodulation product a vcl =+2, v out =2vpp r l =150 ? to gnd fin1=180khz, fin2=280khz spurious measurements @400khz -68 dbc ? g differential gain a vcl =+2, r l =150 ? to gnd f=4.5mhz, v out =2vpp 0.5 % df differential phase a vcl =+2, r l =150 ? to gnd f=4.5mhz, v out =2vpp 0.5 gf gain flatness f=dc to 6mhz, a vcl =+2 0.2 db vo1/vo2 channel separation f=1mhz to 10mhz 65 db table 5. v cc + = 5v, v cc - = -5v, v ic = gnd, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit
tsh70,71,72,73,74,75 electrical characteristics 11/33 4.1 standby mode table 6. v cc + , v cc - , t amb = 25c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit v low standby low level v cc - (v cc - +0.8) v v high standby high level (v cc - +2) (v cc + )v i cc stby current consumption per operator when standby is active pin 8 (tsh71) to v cc - pin 1,2 or 3 (tsh73) to v cc - pin 8 (tsh75) to v cc + pin 9 (tsh75) to v cc - 20 55 a z out output impedance (r out //c out ) r out c out 10 17 m ? pf t on time from standby mode to active mode 2 s t off time from active mode to standby mode down to i cc stby = 10 a10 s tsh71 standby control pin 8 (stby ) operator status v low standby v high active tsh73 standby control operator status pin 1 (stby op1) pin 2 (stby op2) pin 3 (stby op3) op1 op1 op3 v low x x standby x x v high xxactivexx xv low x x standby x xv high xactivex xxv low x x standby xxv high xxactive tsh75 standby control operator status pin 8 (stby op2) pin 9 (stby op3) op1 op2 op3 op4 v high v low active standby standby active v high v high active standby active active v low v low active active standby active v low v high active active active active
electrical characteristics tsh70,71,72,73,74,75 12/33 4.2 characteristic curves for v cc =3v figure 2. closed loop gain and phase vs. frequency (gain = +2, v cc = 1.5v, r l = 150 ?, t amb = 25 c) figure 3. overshoot function of output capacitance (gain = +2, v cc = 1.5v, t amb = 25 c) figure 4. closed loop gain and phase vs. frequency (gain = -10, v cc = 1.5v, r l = 150 ?, t amb = 25 c) figure 5. closed loop gain and phase vs. frequency (gain = +11, v cc = 1.5v, r l = 150 ?, t amb = 25 c) figure 6. large signal measurement - positive slew rate (gain = 2, v cc =1.5v, z l =150 ? //5.6pf) figure 7. large signal measurement - negative slew rate (gain = 2, v cc =1.5v, z l = 150 ? //5.6pf) 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -20 -15 -10 -5 0 5 10 gain (db) -200 -100 0 100 200 phase () gain phase 1e+6 1e+7 1e+8 1e+9 frequency (hz) -5 0 5 10 gain (db) 150 ? 150 ? //10pf 150 ? //33pf 150 ? //22pf 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -100 -50 0 50 100 150 200 gain phase phase () 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -150 -100 -50 0 phase () gain phase 0 102030405060 time (ns) -1 -0.5 0 0.5 1 vout (v) 0102030 40 50 time (ns) -1 -0.5 0 0.5 1 vout (v)
tsh70,71,72,73,74,75 electrical characteristics 13/33 figure 8. small signal measurement - rise time (gain = 2, v cc = 1.5v, z l = 150 ? ) figure 9. small signal measurement - fall time (gain = 2, v cc = 1.5v, z l = 150 ? ) figure 10. channel separation (xtalk) vs. frequency (measurement configuration: xtalk = 20log (v0/v1)) figure 11. channel separation (xtalk) vs. frequency (gain = +11, v cc = 1.5v, z l = 150 ? //27pf) figure 12. equivalent noise voltage (gain = 100, v cc = 1.5v, no load) figure 13. maximum output swing (gain = 11, v cc = 5v, r l = 150 ?) 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout 100 ? 1k ? 100 ? 1k ? + - 49.9 ? vo 150 ? + - 49.9 ? v1 150 ? vin + - 1e+4 1e+5 1e+6 1e+7 frequency (hz) -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 xtalk (db) 3/1output 4/1output 2/1output 0.1 1 10 100 1000 frequency (khz) 5 10 15 20 25 30 en (nv/ hz) _ + 100 10k 0.0e+0 5.0e-2 1.0e-1 1.5e-1 2.0e-1 time (ms) -5 -4 -3 -2 -1 0 1 2 3 4 5 vin, vout (v) vout vin
electrical characteristics tsh70,71,72,73,74,75 14/33 figure 14. standby mode - t on , t off (v cc = 1.5v, open loop) figure 15. group delay gain = 2 (v cc = 1.5v, z l = 150 ? //27pf, t amb = 25 c) figure 16. third order intermodulation (1) (gain = 2, v cc = 1.5v, z l =150 ? //27pf, t amb = 25 c) 1. note on intermodulation products: the ifr2026 synthesizer generates a two tones signal (f1=180khz, f2=280khz); each tone having the same amplitude level. the hp3585 spectrum analyzer measures the intermodulation products function of the output voltage. the generator and the spectrum analyzer are phase locked for precision considerations. 0 2e-6 4e-6 6e-6 8e-6 1e-5 time (s) -2 -1 0 1 2 vin, vout (v) vout ton toff standby vin group delay gain 5.87ns 01234 vout peak(v) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 im3 (dbc) 80khz 380khz 640khz 740khz
tsh70,71,72,73,74,75 electrical characteristics 15/33 4.3 characteristic curves for v cc =5v figure 17. closed loop gain and phase vs. frequency (gain = +2, v cc = 2.5v, r l = 150 ?, t amb = 25 c) figure 18. overshoot function of output capacitance (gain = +2, v cc = 2.5v, t amb = 25 c) figure 19. closed loop gain and phase vs. frequency (gain = -10, v cc = 2.5v, r l = 150 ? , t amb = 25 c) figure 20. closed loop gain and phase vs. frequency (gain = +11, v cc = 2.5v, r l = 150 ?, t amb = 25 c) figure 21. large signal measurement - positive slew rate (gain = 2, v cc = 2.5v, z l = 150 ? //5.6pf) figure 22. large signal measurement - negative slew rate (gain = 2, v cc = 2.5v, z l = 150 ? //5.6pf) 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -15 -10 -5 0 5 10 gain (db) -200 -100 0 100 200 phase () gain phase 1e+6 1e+7 1e+8 1e+9 frequency (hz) -5 0 5 10 gain (db) 150 ? 150 ? //33pf 150 ? //22pf 150 ? //10pf 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -100 -50 0 50 100 150 200 phase () gain phase 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -150 -100 -50 0 phase () gain phase 0 1020304050607080 time (ns) -3 -2 -1 0 1 2 3 vout (v) 0 10203040506070 time (ns) -3 -2 -1 0 1 2 3 vout (v)
electrical characteristics tsh70,71,72,73,74,75 16/33 figure 23. small signal measurement - rise time (gain = 2, v cc = 2.5v, z l = 150 ? ) figure 24. small signal measurement - fall time (gain = 2, v cc = 2.5v, z l = 150 ? ) figure 25. channel separation (xtalk) vs. frequency (measurement configuration: xtalk = 20log (v0/v1)) figure 26. channel separation (xtalk) vs. frequency (gain = +11, v cc = 2.5v, z l = 150 ? //27pf) figure 27. equivalent noise voltage (gain = 100, v cc = 2.5v, no load) figure 28. maximum output swing (gain = 11, v cc = 2.5v, r l = 150 ?) 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin vout (v) vin vout 100 ? 1k ? 100 ? 1k ? + - 49.9 ? vo 150 ? + - 49.9 ? v1 150 ? vin + - 1e+4 1e+5 1e+6 1e+7 frequency (hz) -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 xtalk (db) 3/1output 4/1output 2/1output 0.1 1 10 100 1000 frequency (khz) 5 10 15 20 25 30 en (nv/ hz) _ + 100 10k 0.0e+0 5.0e-2 1.0e-1 1.5e-1 2.0e-1 time (ms) -3 -2 -1 0 1 2 3 vin, vout (v) vout vin
tsh70,71,72,73,74,75 electrical characteristics 17/33 figure 29. standby mode - t on , t off (v cc = 2.5v, open loop) figure 30. group delay (gain = 2, v cc = 2.5v, z l = 150 ? //27pf , t amb = 25 c) figure 31. third order intermodulation (1) (gain = 2, v cc = 2.5v, z l =150 ? //27pf , t amb = 25 c) 1. note on intermodulation products: the ifr2026 synthesizer generates a two tones signal (f1=180khz, f2=280khz); each tone having the same amplitude level. the hp3585 spectrum analyzer measures the intermodulation products function of the output voltage. the generator and the spectrum analyzer are phase locked for precision considerations. 0 2e-64e-66e-68e-61e-5 time (s) -3 -2 -1 0 1 2 3 vin, vout (v) vout ton toff standby vin group delay gain 5.32ns 01234 vout peak(v) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 im3 (dbc) 740khz 380khz 640khz 80khz
electrical characteristics tsh70,71,72,73,74,75 18/33 4.4 characteristic curves for v cc =10v figure 32. closed loop gain and phase vs. frequency (gain = +2, v cc = 5v, r l = 150 ?, t amb = 25 c) figure 33. overshoot function of output capacitance (gain = +2, v cc = 5v, t amb = 25 c) figure 34. closed loop gain and phase vs. frequency (gain = -10, v cc = 5v, r l = 150 ?, t amb = 25 c) figure 35. closed loop gain and phase vs. frequency (gain = +11, v cc = 5v, r l = 150 ?, t amb = 25 c) figure 36. large signal measurement - positive slew rate (gain = 2,v cc = 5v, z l = 150 ? //5.6pf) figure 37. large signal measurement - negative slew rate (gain = 2 v cc = 5v, z l = 150 ? //5.6pf) 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -15 -10 -5 0 5 10 gain (db) -200 -100 0 100 200 phase () gain phase 1e+6 1e+7 1e+8 1e+9 frequency (hz) -5 0 5 10 gain (db) 150 ? 150 ? //10pf 150 ? //33pf 150 ? //22pf 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -50 0 50 100 150 200 phase () gain phase 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 fre q uenc y ( hz ) -10 0 10 20 30 gain (db) -150 -100 -50 0 phase () gain phase 0 20406080100 time (ns) -5 -4 -3 -2 -1 0 1 2 3 4 5 vout (v) 0 20406080100 time (ns) -5 -4 -3 -2 -1 0 1 2 3 4 5 vout (v)
tsh70,71,72,73,74,75 electrical characteristics 19/33 figure 38. small signal measurement - rise time (gain = 2, v cc = 5v, z l = 150 ? ) figure 39. small signal measurement - fall time (gain = 2, v cc = 5v, z l = 150 ? ) figure 40. channel separation (xtalk) vs. frequency (measurement configuration: xtalk = 20log(v0/v1)) figure 41. channel separation (xtalk) vs. frequency (gain = +11, v cc = 5v, z l = 150 ? //27pf) figure 42. equivalent noise voltage (gain =100, v cc = 5v, no load) figure 43. maximum output swing (gain = 11, v cc = 5v, r l = 150 ?) 0 102030405060 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout time (ns) 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout 100 ? 1k ? 100 ? 1k ? + - 49.9 ? vo 150 ? + - 49.9 ? v1 150 ? vin + - 1e+4 1e+5 1e+6 1e+7 frequency (hz) -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 xtalk (db) 3/1output 4/1output 2/1output 0.1 1 10 100 1000 frequency (khz) 5 10 15 20 25 30 en (nv/ hz) _ + 100 10k 0.0e+0 5.0e-2 1.0e-1 1.5e-1 2.0e-1 time (ms) -5 -4 -3 -2 -1 0 1 2 3 4 5 vin, vout (v) vout vin
electrical characteristics tsh70,71,72,73,74,75 20/33 . figure 44. standby mode - t on , t off (v cc = 5v, open loop) figure 45. group delay (gain = 2, v cc = 5v z l = 150 ? //27pf , t amb = 25 c) figure 46. third order intermodulation (1) (gain = 2, v cc = 5v, z l = 150 ? //27pf , t amb = 25 c 1. note on intermodulation products: the ifr2026 synthesizer generates a two tones signal (f1=180khz, f2=280khz); each tone having the same amplitude level. the hp3585 spectrum analyzer measures the intermodulation products function of the output voltage. the generator and the spectrum analyzer are phase locked for precision considerations. 0 2e-6 4e-6 6e-6 8e-6 time (s) -5 0 5 vin, vout (v) vout standby ton toff vin group delay gain 5.1ns 01234 vout peak(v) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 im3 (dbc) 80khz 380khz 640khz 740khz
tsh70,71,72,73,74,75 testing conditions 21/33 5 testing conditions 5.1 layout precautions to use the tsh7x circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: ? first of all, the implementation of a proper ground plane in both sides of the pcb is mandatory for high speed circuit applications to provide low inductance and low resistance common return. ? power supply bypass capacitors (4.7uf and ceramic 100pf) should be placed as close as possible to the ic pins in order to improve high frequency bypassing and reduce harmonic distortion. the power supply capacitors must be incorporated for both the negative and the positive pins. proper termination of all inputs and outputs must be in accordance with output termination resistors; in this way, the amplifier load will be resistive only, and the stability of the amplifier will be improved. all leads must be wide and as short as possible (especially for op-amp inputs and outputs) in order to decrease parasitic capacitance and inductance. for lower gain applications, care should be taken to avoid large feedback resistance (>1k ? ) in order to reduce the time constant of parasitic capacitances. choose component sizes as small as possible (smd). finally, on output, the load capacitance must be negligible to maintain good stability. you can put a serial resistance as close as possible to the output pin to minimize capacitance. 5.2 maximum input level figure 47. ccir330 video line the input level must not exceed the following values: negative peak: must be greater than -v cc +400mv. positive peak value: must be lower than +v cc -400mv.
testing conditions tsh70,71,72,73,74,75 22/33 the electrical characteristics show the influence of the load on this parameter. 5.3 video capabilities to characterize the differential phase and differential gain, a ccir330 video line is used. the video line contains 5 (flat) levels of luma on which is superimposed chroma signal. the first level contains no luma. the luma gives various amplitudes which define the saturation of the signal. the chrominance gives various phases which define the color of the signal. differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. they represent the ability to uniformly process the high frequency information at all luminance levels. when differential gain is present, color saturation is not correctly reproduced. the input generator is the rohde & schwarz ccvs. the output measurement was done by the rohde and schwarz vsa. figure 48. measurement on rohde and schwarz vsa table 7. video results parameter value v cc = 2.5v value v cc = 5v unit lum nl 0.1 0.3 % lum nl step 1 100 100 % lum nl step 2 100 99.9 % lum nl step 3 99.9 99.8 % lum nl step 4 99.9 99.9 % lum nl step 5 99.9 99.7 % diff gain pos 0 0 % diff gain neg -0.7 -0.6 % diff gain pp 0.7 0.6 %
tsh70,71,72,73,74,75 testing conditions 23/33 5.4 precautions when operating on an asymmetrical supply the tsh7x can be used with either a dual or a single supply. if a single supply is used, the inputs are biased to the mid-supply voltage (+v cc /2). this bias network must be carefully designed, in order to reject any noise present on the supply rail. as the bias current is 15ua, you must carefully choose the resistance r1 so as not to introduce an offset mismatch at the amplifier inputs. figure 49. schematic of asymmetrical (single) supply r1 = 10k ? is a typical and convenient value. c1, c2, c3 are bypass capacitors that filter perturbations on v cc , as well as for the input and output signals. we choose c1 = 100nf and c2 = c3 = 100uf. r2, r3 are such that the current through them must be greater than 100 times the bias current. therefore, we set r2 = r3 = 4.7k ? . diff gain step1 -0.5 -0.3 % diff gain step2 -0.7 -0.6 % diff gain step3 -0.3 -0.5 % diff gain step4 -0.1 -0.3 % diff gain step5 -0.4 -0.5 % diff phase pos 0 0.1 deg diff phase neg -0.2 -0.4 deg diff phase pp 0.2 0.5 deg diff phase step1 -0.2 -0.4 deg diff phase step2 -0.1 -0.4 deg diff phase step3 -0.1 -0.3 deg diff phase step4 0 0.1 deg diff phase step5 -0.2 -0.1 deg table 7. video results parameter value v cc = 2.5v value v cc = 5v unit in r1 vcc+ out r2 r3 c1 c3 c2 c in c out + - cf r5 r4 r l
testing conditions tsh70,71,72,73,74,75 24/33 c in , as c out , is chosen to filter the dc signal by the low-pass filters (r1,c in and r out , c out ). by taking r1 = 10k ? , r l = 150 ?, and c in = 2uf, c out =220uf we provide a cut-off frequency below 10hz. figure 50. use of the tsh7x in gain = -1 configuration some precautions must be taken, especially for low-power supply applications. a feedback capacitance, c f , should be added for better stability. table 8 summarizes the impact of the capacitance c f on the phase margin of the circuit. table 8. impact capacitance c f parameter c f (pf) v cc = 1.5v v cc = 2.5v v cc = 5v unit phase margin 0 28 43 56 deg f-3db 40 39.3 38.3 mhz phase margin 5.6 30 43 56 deg f-3db 40 39.3 38.3 mhz phase margin 22 37 52 67 deg f-3db 37 34 32 mhz phase margin 33 48 65 78 deg f-3db 33.7 30.7 27.6 mhz in r1 vcc+ out r2 r3 c1 c3 c2 c in c out + - 1k c f 1k r l
tsh70,71,72,73,74,75 package mechanical data 25/33 6 package mechanical data in order to meet environmental requirements, st offers these devices in ecopack ? packages. these packages have a lead-free second level interconnect. the category of second level interconnect is marked on the package and on the inner box label, in compliance with jedec standard jesd97. the maximum ratings related to soldering conditions are also marked on the inner box label. ecopack is an st trademark. ecopack specifications are available at: www.st.com . 6.1 so-8 package dim. mm. inch min. typ max. min. typ. max. a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.04 0.010 a2 1.10 1.65 0.043 0.065 b 0.33 0.51 0.013 0.020 c 0.19 0.25 0.007 0.010 d 4.80 5.00 0.189 0.197 e 3.80 4.00 0.150 0.157 e 1.27 0.050 h 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 k ? (max.) ddd 0.1 0.04 so-8 mechanical data 0016023/c 8
package mechanical data tsh70,71,72,73,74,75 26/33 6.2 tssop8 package dim. mm. inch min. typ max. min. typ. max. a 1.2 0.047 a1 0.05 0.15 0.002 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 d 2.90 3.00 3.10 0.114 0.118 0.122 e 6.20 6.40 6.60 0.244 0.252 0.260 e1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.0256 k0? 8?0? 8? l 0.45 0.60 0.75 0.018 0.024 0.030 l1 1 0.039 tssop8 mechanical data 0079397/d
tsh70,71,72,73,74,75 package mechanical data 27/33 6.3 so-14 package dim. mm. inch min. typ max. min. typ. max. a 1.75 0.068 a1 0.1 0.2 0.003 0.007 a2 1.65 0.064 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 c 0.5 0.019 c1 45? (typ.) d 8.55 8.75 0.336 0.344 e 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 7.62 0.300 f 3.8 4.0 0.149 0.157 g 4.6 5.3 0.181 0.208 l 0.5 1.27 0.019 0.050 m 0.68 0.026 s? (max.) so-14 mechanical data po13g 8
package mechanical data tsh70,71,72,73,74,75 28/33 6.4 tssop14 package dim. mm. inch min. typ max. min. typ. max. a 1.2 0.047 a1 0.05 0.15 0.002 0.004 0.006 a2 0.8 1 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 d 4.9 5 5.1 0.193 0.197 0.201 e 6.2 6.4 6.6 0.244 0.252 0.260 e1 4.3 4.4 4.48 0.169 0.173 0.176 e 0.65 bsc 0.0256 bsc k0? 8?0? 8? l 0.45 0.60 0.75 0.018 0.024 0.030 tssop14 mechanical data c e b a2 a e1 d 1 pin 1 identification a1 l k e 0080337d
tsh70,71,72,73,74,75 package mechanical data 29/33 6.5 so-16 package dim. mm. inch min. typ max. min. typ. max. a 1.75 0.068 a1 0.1 0.2 0.004 0.008 a2 1.65 0.064 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 c 0.5 0.019 c1 45? (typ.) d 9.8 10 0.385 0.393 e 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 8.89 0.350 f 3.8 4.0 0.149 0.157 g 4.6 5.3 0.181 0.208 l 0.5 1.27 0.019 0.050 m 0.62 0.024 s8 ? (max.) so-16 mechanical data po13h
package mechanical data tsh70,71,72,73,74,75 30/33 6.6 tssop16 package dim. mm. inch min. typ max. min. typ. max. a 1.2 0.047 a1 0.05 0.15 0.002 0.004 0.006 a2 0.8 1 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0079 d 4.9 5 5.1 0.193 0.197 0.201 e 6.2 6.4 6.6 0.244 0.252 0.260 e1 4.3 4.4 4.48 0.169 0.173 0.176 e 0.65 bsc 0.0256 bsc k0? 8?0? 8? l 0.45 0.60 0.75 0.018 0.024 0.030 tssop16 mechanical data c e b a2 a e1 d 1 pin 1 identification a1 l k e 0080338d
tsh70,71,72,73,74,75 package mechanical data 31/33 6.7 sot23-5 package dim. mm. mils min. typ max. min. typ. max. a 0.90 1.45 35.4 57.1 a1 0.00 0.15 0.0 5.9 a2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 c 0.09 0.20 3.5 7.8 d 2.80 3.00 110.2 118.1 e 2.60 3.00 102.3 118.1 e1 1.50 1.75 59.0 68.8 e.95 37.4 e1 1.9 74.8 l 0.35 0.55 13.7 21.6 sot23-5l mechanical data 0
revision history tsh70,71,72,73,74,75 32/33 7 revision history table 9. document revision history date revision changes nov. 2000 1 first release. aug. 2002 2 limit min. of i sink from 24ma to 20ma (only on 3v power supply). reason: yield improvement. may 2006 3 improvement of vol max. at 3v and 5v power supply on 150- ohm load connected to gnd (pages 6 and 8). reason: tsh7x can drive video signals from dacs to lines in single supply (3v or 5v) without any dc level change of the video signals. grammatical and typographical changes throughout. package mechanical data updated.
tsh70,71,72,73,74,75 33/33 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at an y time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a particular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by an authorize representative of st, st products are not designed, authorized or warranted for use in military, air craft, space, life saving, or life sustaining applications, nor in products or systems, where failure or malfunction may result in personal injury, death, or severe property or environmental damage. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, an y liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2006 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of TSH74CD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X